Copied to
clipboard

G = C23:Dic13order 416 = 25·13

The semidirect product of C23 and Dic13 acting via Dic13/C13=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23:Dic13, C23.2D26, (C2xC52):6C4, (C2xC4):Dic13, (C2xC26).2D4, C13:4(C23:C4), (C22xC26):2C4, (D4xC26).6C2, (C2xD4).3D13, C23.D13:2C2, C26.26(C22:C4), C22.2(C13:D4), (C22xC26).6C22, C2.5(C23.D13), C22.3(C2xDic13), (C2xC26).49(C2xC4), SmallGroup(416,41)

Series: Derived Chief Lower central Upper central

C1C2xC26 — C23:Dic13
C1C13C26C2xC26C22xC26C23.D13 — C23:Dic13
C13C26C2xC26 — C23:Dic13
C1C2C23C2xD4

Generators and relations for C23:Dic13
 G = < a,b,c,d,e | a2=b2=c2=d26=1, e2=d13, ab=ba, dad-1=ac=ca, eae-1=abc, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 280 in 52 conjugacy classes, 21 normal (15 characteristic)
Quotients: C1, C2, C4, C22, C2xC4, D4, C22:C4, D13, C23:C4, Dic13, D26, C2xDic13, C13:D4, C23.D13, C23:Dic13
2C2
2C2
2C2
4C2
2C22
2C4
4C22
4C22
52C4
52C4
2C26
2C26
2C26
4C26
2D4
2D4
26C2xC4
26C2xC4
2C52
2C2xC26
4Dic13
4C2xC26
4Dic13
4C2xC26
13C22:C4
13C22:C4
2C2xDic13
2C2xDic13
2D4xC13
2D4xC13
13C23:C4

Smallest permutation representation of C23:Dic13
On 104 points
Generators in S104
(1 74)(2 43)(3 76)(4 45)(5 78)(6 47)(7 54)(8 49)(9 56)(10 51)(11 58)(12 27)(13 60)(14 29)(15 62)(16 31)(17 64)(18 33)(19 66)(20 35)(21 68)(22 37)(23 70)(24 39)(25 72)(26 41)(28 83)(30 85)(32 87)(34 89)(36 91)(38 93)(40 95)(42 97)(44 99)(46 101)(48 103)(50 79)(52 81)(53 102)(55 104)(57 80)(59 82)(61 84)(63 86)(65 88)(67 90)(69 92)(71 94)(73 96)(75 98)(77 100)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 25)(13 26)(27 72)(28 73)(29 74)(30 75)(31 76)(32 77)(33 78)(34 53)(35 54)(36 55)(37 56)(38 57)(39 58)(40 59)(41 60)(42 61)(43 62)(44 63)(45 64)(46 65)(47 66)(48 67)(49 68)(50 69)(51 70)(52 71)(79 92)(80 93)(81 94)(82 95)(83 96)(84 97)(85 98)(86 99)(87 100)(88 101)(89 102)(90 103)(91 104)
(1 97)(2 98)(3 99)(4 100)(5 101)(6 102)(7 103)(8 104)(9 79)(10 80)(11 81)(12 82)(13 83)(14 84)(15 85)(16 86)(17 87)(18 88)(19 89)(20 90)(21 91)(22 92)(23 93)(24 94)(25 95)(26 96)(27 59)(28 60)(29 61)(30 62)(31 63)(32 64)(33 65)(34 66)(35 67)(36 68)(37 69)(38 70)(39 71)(40 72)(41 73)(42 74)(43 75)(44 76)(45 77)(46 78)(47 53)(48 54)(49 55)(50 56)(51 57)(52 58)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 74 14 61)(2 73 15 60)(3 72 16 59)(4 71 17 58)(5 70 18 57)(6 69 19 56)(7 68 20 55)(8 67 21 54)(9 66 22 53)(10 65 23 78)(11 64 24 77)(12 63 25 76)(13 62 26 75)(27 99 40 86)(28 98 41 85)(29 97 42 84)(30 96 43 83)(31 95 44 82)(32 94 45 81)(33 93 46 80)(34 92 47 79)(35 91 48 104)(36 90 49 103)(37 89 50 102)(38 88 51 101)(39 87 52 100)

G:=sub<Sym(104)| (1,74)(2,43)(3,76)(4,45)(5,78)(6,47)(7,54)(8,49)(9,56)(10,51)(11,58)(12,27)(13,60)(14,29)(15,62)(16,31)(17,64)(18,33)(19,66)(20,35)(21,68)(22,37)(23,70)(24,39)(25,72)(26,41)(28,83)(30,85)(32,87)(34,89)(36,91)(38,93)(40,95)(42,97)(44,99)(46,101)(48,103)(50,79)(52,81)(53,102)(55,104)(57,80)(59,82)(61,84)(63,86)(65,88)(67,90)(69,92)(71,94)(73,96)(75,98)(77,100), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,72)(28,73)(29,74)(30,75)(31,76)(32,77)(33,78)(34,53)(35,54)(36,55)(37,56)(38,57)(39,58)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,69)(51,70)(52,71)(79,92)(80,93)(81,94)(82,95)(83,96)(84,97)(85,98)(86,99)(87,100)(88,101)(89,102)(90,103)(91,104), (1,97)(2,98)(3,99)(4,100)(5,101)(6,102)(7,103)(8,104)(9,79)(10,80)(11,81)(12,82)(13,83)(14,84)(15,85)(16,86)(17,87)(18,88)(19,89)(20,90)(21,91)(22,92)(23,93)(24,94)(25,95)(26,96)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,53)(48,54)(49,55)(50,56)(51,57)(52,58), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,74,14,61)(2,73,15,60)(3,72,16,59)(4,71,17,58)(5,70,18,57)(6,69,19,56)(7,68,20,55)(8,67,21,54)(9,66,22,53)(10,65,23,78)(11,64,24,77)(12,63,25,76)(13,62,26,75)(27,99,40,86)(28,98,41,85)(29,97,42,84)(30,96,43,83)(31,95,44,82)(32,94,45,81)(33,93,46,80)(34,92,47,79)(35,91,48,104)(36,90,49,103)(37,89,50,102)(38,88,51,101)(39,87,52,100)>;

G:=Group( (1,74)(2,43)(3,76)(4,45)(5,78)(6,47)(7,54)(8,49)(9,56)(10,51)(11,58)(12,27)(13,60)(14,29)(15,62)(16,31)(17,64)(18,33)(19,66)(20,35)(21,68)(22,37)(23,70)(24,39)(25,72)(26,41)(28,83)(30,85)(32,87)(34,89)(36,91)(38,93)(40,95)(42,97)(44,99)(46,101)(48,103)(50,79)(52,81)(53,102)(55,104)(57,80)(59,82)(61,84)(63,86)(65,88)(67,90)(69,92)(71,94)(73,96)(75,98)(77,100), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,72)(28,73)(29,74)(30,75)(31,76)(32,77)(33,78)(34,53)(35,54)(36,55)(37,56)(38,57)(39,58)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,69)(51,70)(52,71)(79,92)(80,93)(81,94)(82,95)(83,96)(84,97)(85,98)(86,99)(87,100)(88,101)(89,102)(90,103)(91,104), (1,97)(2,98)(3,99)(4,100)(5,101)(6,102)(7,103)(8,104)(9,79)(10,80)(11,81)(12,82)(13,83)(14,84)(15,85)(16,86)(17,87)(18,88)(19,89)(20,90)(21,91)(22,92)(23,93)(24,94)(25,95)(26,96)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,53)(48,54)(49,55)(50,56)(51,57)(52,58), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,74,14,61)(2,73,15,60)(3,72,16,59)(4,71,17,58)(5,70,18,57)(6,69,19,56)(7,68,20,55)(8,67,21,54)(9,66,22,53)(10,65,23,78)(11,64,24,77)(12,63,25,76)(13,62,26,75)(27,99,40,86)(28,98,41,85)(29,97,42,84)(30,96,43,83)(31,95,44,82)(32,94,45,81)(33,93,46,80)(34,92,47,79)(35,91,48,104)(36,90,49,103)(37,89,50,102)(38,88,51,101)(39,87,52,100) );

G=PermutationGroup([[(1,74),(2,43),(3,76),(4,45),(5,78),(6,47),(7,54),(8,49),(9,56),(10,51),(11,58),(12,27),(13,60),(14,29),(15,62),(16,31),(17,64),(18,33),(19,66),(20,35),(21,68),(22,37),(23,70),(24,39),(25,72),(26,41),(28,83),(30,85),(32,87),(34,89),(36,91),(38,93),(40,95),(42,97),(44,99),(46,101),(48,103),(50,79),(52,81),(53,102),(55,104),(57,80),(59,82),(61,84),(63,86),(65,88),(67,90),(69,92),(71,94),(73,96),(75,98),(77,100)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,25),(13,26),(27,72),(28,73),(29,74),(30,75),(31,76),(32,77),(33,78),(34,53),(35,54),(36,55),(37,56),(38,57),(39,58),(40,59),(41,60),(42,61),(43,62),(44,63),(45,64),(46,65),(47,66),(48,67),(49,68),(50,69),(51,70),(52,71),(79,92),(80,93),(81,94),(82,95),(83,96),(84,97),(85,98),(86,99),(87,100),(88,101),(89,102),(90,103),(91,104)], [(1,97),(2,98),(3,99),(4,100),(5,101),(6,102),(7,103),(8,104),(9,79),(10,80),(11,81),(12,82),(13,83),(14,84),(15,85),(16,86),(17,87),(18,88),(19,89),(20,90),(21,91),(22,92),(23,93),(24,94),(25,95),(26,96),(27,59),(28,60),(29,61),(30,62),(31,63),(32,64),(33,65),(34,66),(35,67),(36,68),(37,69),(38,70),(39,71),(40,72),(41,73),(42,74),(43,75),(44,76),(45,77),(46,78),(47,53),(48,54),(49,55),(50,56),(51,57),(52,58)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,74,14,61),(2,73,15,60),(3,72,16,59),(4,71,17,58),(5,70,18,57),(6,69,19,56),(7,68,20,55),(8,67,21,54),(9,66,22,53),(10,65,23,78),(11,64,24,77),(12,63,25,76),(13,62,26,75),(27,99,40,86),(28,98,41,85),(29,97,42,84),(30,96,43,83),(31,95,44,82),(32,94,45,81),(33,93,46,80),(34,92,47,79),(35,91,48,104),(36,90,49,103),(37,89,50,102),(38,88,51,101),(39,87,52,100)]])

71 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E13A···13F26A···26R26S···26AP52A···52L
order1222224444413···1326···2626···2652···52
size1122244525252522···22···24···44···4

71 irreducible representations

dim1111122222244
type+++++--++
imageC1C2C2C4C4D4D13Dic13Dic13D26C13:D4C23:C4C23:Dic13
kernelC23:Dic13C23.D13D4xC26C2xC52C22xC26C2xC26C2xD4C2xC4C23C23C22C13C1
# reps121222666624112

Matrix representation of C23:Dic13 in GL4(F53) generated by

6100
184700
32244242
44143511
,
6100
184700
001111
001842
,
52000
05200
00520
00052
,
22134121
2225041
001916
003140
,
37141543
46163150
2214127
27122812
G:=sub<GL(4,GF(53))| [6,18,32,44,1,47,24,14,0,0,42,35,0,0,42,11],[6,18,0,0,1,47,0,0,0,0,11,18,0,0,11,42],[52,0,0,0,0,52,0,0,0,0,52,0,0,0,0,52],[22,22,0,0,13,25,0,0,41,0,19,31,21,41,16,40],[37,46,22,27,14,16,1,12,15,31,41,28,43,50,27,12] >;

C23:Dic13 in GAP, Magma, Sage, TeX

C_2^3\rtimes {\rm Dic}_{13}
% in TeX

G:=Group("C2^3:Dic13");
// GroupNames label

G:=SmallGroup(416,41);
// by ID

G=gap.SmallGroup(416,41);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-13,24,121,188,579,13829]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^26=1,e^2=d^13,a*b=b*a,d*a*d^-1=a*c=c*a,e*a*e^-1=a*b*c,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of C23:Dic13 in TeX

׿
x
:
Z
F
o
wr
Q
<